Entanglement and flow
and what they say about
Universality and Simulateability of QC

Damian Markham

Joint work with Elham Kashefi

CNRS, LTCI–ENST (Telecom ParisTech), Paris
Motivation

• Where do the quantum advantages lie in quantum computation?
 (what’s so quantum about it?)

• Is this connected to quantum effects in nature?
 (quantum computation as a phase transition?)
Motivation

• Where do the quantum advantages lie in quantum computation? (what’s so quantum about it?)

• Is this connected to quantum effects in nature? (quantum computation as a phase transition?)

Unify results and ideas

Universality & Classical Simulatability VS Entanglement & Flow (structural prop of MBQC)

Unify results and ideas
• **Universality**

 Can it be used to do universal QC?

 - Circuit made up of Rotation and CNOT
 - MBCQ: resource state $|\Phi_n\rangle$ satisfies

 $$E(|\Phi_n\rangle) > \log n$$

 [Van den Nest et al. 06/07]

• **Classical simulatability**

 Can it be simulated efficiently on a classical computer?

 - Clifford gates only [Gottesman, Knill 97]
 - Match gates with n.n. [Valiant 02, Van den Nest 08, Jozsa Miyake 08]
 - Bounded number of 2 qubit gates [Jozsa 06]
 - MBQC: efficiently sim. if

 $$E(|\Phi_n\rangle) < \log n$$

 [Shi. et al, Yoran Short, Van den Nest et al. 05]
Results

• Relationship

Entanglement ↔ Flow

• New conditions for classical simulatability
 (in terms of flow and entanglement)

• Recover several known results
 - Clifford gates only [Gottesman, Knill 97]
 - Bounded number of 2 qubit gates [Jozsa 06]
Measurement Based Quantum Computation (MBQC)

- Initial entangled resource state $|\Phi_n\rangle$
- Single qubit measurements
- Local corrections

R. Raussendorf and H. J. Briegel, PRL 85 5188 (2001)
D. Browne and H. J. Briegel, quant-ph/0603226
Measurement Based Quantum Computation (MBQC)

• Initial entangled resource state $|\Phi_n\rangle$

• Single qubit measurements

• Local corrections

R. Raussendorf and H. J. Briegel, PRL 85 5188 (2001)
D. Browne and H. J. Briegel, quant-ph/0603226
Measurement Based Quantum Computation (MBQC)

• Initial entangled resource state $|\Phi_n\rangle$

• Single qubit measurements

• Local corrections

R. Raussendorf and H. J. Briegel, PRL 85 5188 (2001)
D. Browne and H. J. Briegel, quant-ph/0603226
Measurement Based Quantum Computation (MBQC)

- Initial entangled resource state $|\Phi_n\rangle$
- Single qubit measurements
- Local corrections

R. Raussendorf and H. J. Briegel, PRL 85 5188 (2001)
D. Browne and H. J. Briegel, quant-ph/0603226
Measurement Based Quantum Computation (MBQC)

- Initial entangled resource state $|\Phi_n\rangle$
- Single qubit measurements
- Local corrections

R. Raussendorf and H. J. Briegel, PRL 85 5188 (2001)
D. Browne and H. J. Briegel, quant-ph/0603226
Measurement Based Quantum Computation (MBQC)

• Initial entangled resource state $|\Phi_n\rangle$

• Single qubit measurements

• Local corrections

R. Raussendorf and H. J. Briegel, PRL 85 5188 (2001)
D. Browne and H. J. Briegel, quant-ph/0603226
Measurement Based Quantum Computation (MBQC)

• Initial entangled resource state $|\Phi_n\rangle$

• Single qubit measurements

• Local corrections

R. Raussendorf and H. J. Briegel, PRL 85 5188 (2001)
D. Browne and H. J. Briegel, quant-ph/0603226
Measurement Based Quantum Computation (MBQC)

- Initial entangled resource state $|\Phi_n\rangle$
- Single qubit measurements
- Local corrections

R. Raussendorf and H. J. Briegel, PRL 85 5188 (2001)
D. Browne and H. J. Briegel, quant-ph/0603226
Measurement Based Quantum Computation (MBQC)

- Initial entangled resource state $|\Phi_n\rangle$
- Single qubit measurements
- Local corrections

R. Raussendorf and H. J. Briegel, PRL 85 5188 (2001)
D. Browne and H. J. Briegel, quant-ph/0603226
Measurement Based Quantum Computation (MBQC)

• Initial entangled resource state $|\Phi_n\rangle$

• Single qubit measurements

• Local corrections

R. Raussendorf and H. J. Briegel, PRL 85 5188 (2001)
D. Browne and H. J. Briegel, quant-ph/0603226
Measurement Based Quantum Computation (MBQC)

- Initial entangled resource state $|\Phi_n\rangle$
- Single qubit measurements
- Local corrections

R. Raussendorf and H. J. Briegel, PRL 85 5188 (2001)
D. Browne and H. J. Briegel, quant-ph/0603226
Measurement Based Quantum Computation (MBQC)

- Initial entangled resource state $|\Phi_n\rangle$
- Single qubit measurements
- Local corrections

R. Raussendorf and H. J. Briegel, PRL 85 5188 (2001)
D. Browne and H. J. Briegel, quant-ph/0603226
Measurement Based Quantum Computation (MBQC)

• Initial entangled resource state $|\Phi_n\rangle$
• Single qubit measurements
• Local corrections

R. Raussendorf and H. J. Briegel, PRL 85 5188 (2001)
D. Browne and H. J. Briegel, quant-ph/0603226
Measurement Based Quantum Computation (MBQC)

- Initial entangled resource state $\ket{\Phi_n}$
- Single qubit measurements $\ket{\varphi_n}$
- Local corrections

R. Raussendorf and H. J. Briegel, PRL 85 5188 (2001)
D. Browne and H. J. Briegel, quant-ph/0603226
Measurement Based Quantum Computation (MBQC)

- Initial entangled resource state $|\Phi_n\rangle$
- Single qubit measurements
- Local corrections

R. Raussendorf and H. J. Briegel, PRL 85 5188 (2001)
D. Browne and H. J. Briegel, quant-ph/0603226
Measurement Based Quantum Computation (MBQC)

- Initial entangled resource state $|\Phi_n\rangle$
- Single qubit measurements
- Local corrections

R. Raussendorf and H. J. Briegel, PRL 85 5188 (2001)
D. Browne and H. J. Briegel, quant-ph/0603226
Measurement Based Quantum Computation (MBQC)

- Initial entangled resource state $|\Phi_n\rangle$
- Single qubit measurements
- Local corrections

R. Raussendorf and H. J. Briegel, PRL 85 5188 (2001)
D. Browne and H. J. Briegel, quant-ph/0603226
Measurement Based Quantum Computation (MBQC)

- Initial entangled resource state $|\Phi_n\rangle$
- Single qubit measurements
- Local corrections

R. Raussendorf and H. J. Briegel, PRL 85 5188 (2001)
D. Browne and H. J. Briegel, quant-ph/0603226
Measurement Based Quantum Computation (MBQC)

- Initial entangled resource state $|\Phi_n\rangle$
- Single qubit measurements
- Local corrections

R. Raussendorf and H. J. Briegel, PRL 85 5188 (2001)
D. Browne and H. J. Briegel, quant-ph/0603226
Measurement Based Quantum Computation (MBQC)

• What are the correction operations, and why do we need them?
Measurement Based Quantum Computation (MBQC)

• What are the correction operations, and why do we need them?

Measurement is random
(need to recover determinism)
Measurement Based Quantum Computation (MBQC)

- What are the correction operations, and *why do we need them*?

Measurement is random
(need to recover determinism)

Measure first qubit

\[P \quad 1-P \]
Measurement Based Quantum Computation (MBQC)

- What are the correction operations, and **why do we need them?**

Measurement is random
(need to recover determinism)

Measure first qubit
Measurement Based Quantum Computation (MBQC)

• What are the correction operations, and why do we need them?

Measurement is random
(need to recover determinism)

Measure first qubit
Measurement Based Quantum Computation (MBQC)

- **What are the correction operations**, and why do we need them?

 Flow tells us when it can be done, and which operations to make.
Flow / gFlow

• Condition for a graph state to allow deterministic computation
 (tells you if corrections exist and what they are)

Mathematically, there is gFlow if there exists both
- Function \(f : O^c \rightarrow P^l_c \) (arrow)
- Partial order \(\leq \) (measurement sequence)

1) \(i \notin f(i) \) and \(i \in odd(f(i)) \)
2) if \(j \in f(i) \) and \(i \neq j \) then \(i < j \)
3) if \(j \leq i \) and \(i \neq j \) then \(j \notin odd(f(i)) \)

Flow / gFlow

• Condition for a graph state to allow deterministic computation
 (tells you if corrections exist and what they are)

• Strong structural approach gives rise to

 - Depth complexity gap between MBQC and Circuit model
 [Broadbent, Kashefi 07, Browne, Kashefi, Perdrix 09]

 - New translations between circuit and MBQC
 [de Beautrap et al 08]

Entanglement interpretation of flow

- Need n ebits across any cut In : Out
 (since LOCC computation can be seen as teleportation)
Entanglement interpretation of flow

- Need n ebits across any cut In : Out
 (since LOCC computation can be seen as teleportation)
Entanglement interpretation of flow

- Need n ebits across any cut In : Out
 (since LOCC computation can be seen as teleportation)
Entanglement interpretation of flow

- Need n-ebits across any cut In : Out → n wires
Entanglement interpretation of flow

- Need n-ebits across any cut In : Out → n wires
- Extra edges? -> shouldn’t break n-ebits

Flow / g-flow

n wires

+ no ‘bad’ cycles
Graphical conditions: gFlow

- Function \(f : O^c \rightarrow P^l_c \) (arrow)
- Partial order \(\leq \) (measurement sequence)

1) \(i \not\in f(i) \) and \(i \in \text{odd}(f(i)) \)
2) if \(j \in f(i) \) and \(i \neq j \) then \(i < j \)
3) if \(j \leq i \) and \(i \neq j \) then \(j \not\in \text{odd}(f(i)) \)

1 ebit only!

An open graph \((G, I, O)\) permits a unitary if it has gflow
Universality / Simulatability in MBQC

• What is a universal resource state / when does a resource state give classical simulatable MBQC?

 • Universality

 \[E(\Phi_n) > \log n \]

 [Van den Nest et al. 06/07]

 • Classical simulatability

 - Any MBQC can be simulated in

 \[O(n^2 \text{poly}(2^{E(\Phi_n)}) \) \]

 - Efficiently simulatable if

 \[E(\Phi_n) < \log n \]

 [Shi. et al, Yoran Short, Van den Nest et al. 05]
Structural Entanglement

\[E_{struc}(|\Phi\rangle) := \min_{Order} \max_{Cut,k} E_{AB}(|\Phi\rangle) \]

[Yoran & Short 05]
Structural Entanglement

\[E_{\text{struc}}(\Phi) = \min_{\text{Order} 1,...,n} \max_{k} E_{AB}(\Phi) \]

[Yoran & Short 05]
Structural Entanglement

\[E_{\text{struc}}(\Phi) := \min_{\text{Order}} \max_{\text{Cut} k, A=1..k, B=k+1..n} E_{AB}(\Phi) \]

[Yoran & Short 05]
Structural Entanglement

\[E_{struc}(\Phi) := \min_{\text{Order }} \max_{\text{Cut } k} E_{AB}(\Phi) \]

[Yoran & Short 05]

\[K=17 \]

\[E_{AB}(\Phi) \]
Structural Entanglement

\[E_{struc}(\Phi) = \min_{\text{Order}} \max_{\text{Cut}} E_{AB}(\Phi) \]

[Yoran & Short 05]
Universality / Simulatability in MBQC

• What is a universal resource state / when does a resource state give classical simulatable MBQC?

• Universality

\[E(\Phi_n) > \log n \]

[Van den Nest et al. 06/07]

• Classical simulatability

- Any MBQC can be simulated in

\[O(n^2 \text{poly}(2^{E(\Phi_n)}) \big)} \]

- Efficiently simulatable if

\[E(\Phi_n) < \log n \]

[Shi. et al, Yoran Short, Van den Nest et al. 05]
Flow and structural entanglement

- Use flow to bound the entanglement
 - Flow gives a ‘natural’ order

\[E_{\text{struc}} (\Phi) = \min_{\text{Order}} \max_{\text{Cut'k}} E_{AB} (\Phi) \]

\[E_{AB} (\Phi) = \frac{1}{n} \sum_{i=1}^{n} A_i B_i \]
Flow and structural entanglement

- Use flow to bound the entanglement
 - Flow gives a ‘natural’ order

\[E_{\text{struc}}(\Phi) := \min_{\text{Order}} \max_{\text{Cut} k} E_{AB}(\Phi) \]

- gFlow implies wires in -> out
Flow and structural entanglement

• Use flow to bound the entanglement
 - Flow gives a ‘natural’ order

\[E_{struc}(|\Phi\rangle) := \min_{Order} \max_{Cut} \max_{A=1..k} E_{AB}(|\Phi\rangle) \]

• gFlow implies wires in -> out

• Use to give an order
 left to right, top to bottom
Flow and structural entanglement

• Use flow to bound the entanglement
 - Flow gives a ‘natural’ order

\[E_{struc}(\Phi) := \min_{\text{Order}} \max_{\text{Cut k}} E_{\text{AB}}(\Phi) \]

• gFlow implies wires in -> out
• Use to give an order left to right, top to bottom
• Choose cut maximising entanglement
 entanglement ~ number of wires cut
Flow and structural entanglement

• Use flow to bound the entanglement
 - Flow gives a ‘natural’ order

\[E_{\text{struc}}(\Phi) = \min_{\text{Order}} \max_{\text{Cut }k} E_{AB}(\Phi) \]

\[E_{AB}(\Phi) = 3 \]

• \text{gFlow} implies wires in -> out

• Use to give an order
 left to right, top to bottom

• Choose cut maximising entanglement
 entanglement ~ number of wires cut

• Since it may not be the \textit{minimum} order:

\[E_{\text{struc}}(\Phi) \leq 1 + \max \text{ no. edges between Flow wires} \]
Flow and structural entanglement

• Use flow to bound the entanglement
 - Flow gives a ‘natural’ order
 - Flow implies wires in -> out

\[E_{struc}(|\Phi\rangle) := \min_{Order} \max_{Cut \ k \ A=1..k \ B=k+1..n} E_{AB}(|\Phi\rangle) \]

• gFlow implies wires in -> out
• Use to give an order
 left to right, top to bottom
• Choose cut maximising entanglement
 entanglement ~ number of wires cut

• Since it may not be the minimum order:

\[E_{struc}(|\Phi\rangle) \leq 1 + \max \text{no. edges between Flow wires} \]
Flow and Classical Simulatability in MBQC

• Given a gFlow, call

\[C_F = \max \text{ no. edges crossing between gFlow wires } \]

- Any MBQC can be simulated in

\[O(n^2 \text{poly}(2^{C_F})) \]

- Efficiently simulatable if

\[C_F < \log n \]
Connection to Jozsa condition

• If the number of 2qubit gates in a circuit is D
 [Jozsa 06]

 - It can be simulated in
 $$O(n^2 \text{poly}(2^D))$$
 - Efficiently simulatable if
 $$D < \log n$$
Connection to Jozsa condition

• If the number of 2qubit gates in a circuit is \(D \)
 [Jozsa 06]
 - It can be simulated in
 \[O(n^2 \text{poly}(2^D)) \]
 - Efficiently simulatatable if
 \[D < \log n \]

• Follows from map circuit -> MBQC

\[\text{Input} \quad \rightarrow \quad \text{Output} \]
Conclusions

• New condition for simulatability in terms of flow / entanglement
 - Any MBQC can be simulated in $O(n^2 \text{poly}(2^{C_F}))$
 - Efficiently simulatable if $C_F < \log n$

• Unified (somewhat) set of conditions
 (flow, entanglement, universality, simulatability)

• Can it all be described as entanglement?
• Connection to criticality?
Thank you!

http://iq.enst.fr/