Context-aware architectures

Guy Bernard

October 2003
IEEE Pervasive Computing July-septembre 2003

Context-aware architectures - © Guy Bernard / INT - October 2003
• framework for Symbian OS
• "blackboard-based" communication (center = context manager)
• stress on
 - fuzzy thresholds (Bayesian reasoning)
 - low-level vs. high-level context values
 • description syntax: Resource Description Framework (www.w3c.org)
VTT (3)

Context-aware architectures - © Guy Bernard / INT - October 2003
IEEE Computer, september 2003
open-source Instant Messaging (www.jabber.org)
Univ. Lancaster, ReMMoC project

● Tech. Report MPG-03-01
Univ. College London, CARISMA project (1)

Fig. 1. User and application profiles.

Fig. 3. Application profile.
Fig. 4. Roles and Responsibilities in the Reflective Process.
CARISMA (3)

- their own "simple message passing" - porting to JMS underway

Figure 6.1: CARISMA architecture.
Couche de communication

- La couche de communication est basée sur le graphe de protocoles de Jonathan dans le but de:
 - instancier dynamiquement un graphe adapté aux conditions de l'environnement à cet instant;
 - restructurer et modifier ce graphe si les conditions varient pendant l'exécution
- Connexion multiple: possibilité d'utiliser simultanément plusieurs connecteurs (TCP, UDP...)
Le projet GET CARISM (2/2)

- Plate-forme mobile

CARISM (2)
CARISM (3)

Gestion locale à l’unité mobile

- Lications
 - Evaluation des besoins
 - Gestion architecture locale
 - Prise en compte des besoins des applications
 - API JMS
 - Moniteur de ressources système
 - Choix de configuration
ITEA Vivian project, ICM
AMPROS proposed architecture (1)
AMPROS proposed architecture (2)

- **Resource Monitor**
 - 1 resource monitor for each resource ("driver") type
 - WiFi, TETRA, remaining battery, available memory, geolocation, # of processes, ...
 - includes some system- and device-dependent code
 - gets raw data and processes it in order to provide system-independent low-level context data, e.g.:
 - bandwidth => average value in the last minute
 - geolocation => x, y
 - pushes (periodically ??) low-level context data to Context Recognition Service, e.g.:
 - Device:Network:WiFi:bandwidth = 30
 - Location:Coordinates = {80.0, 140.3}
AMPROS proposed architecture (3)

- **Context Recognition Service**
 - gathers low-level context data from Resource Monitors
 - returns the appropriate high-level context data, as considered by Applications/Users Profiles, to the Context Manager, e.g.:
 - Device:Network:*:Bandwidth = {WiFi:Bandwidth=30, Tetra:Bandwidth=0}

- **Applications/Users Profiles**
 - describe the interest of individual applications, or users, or middleware itself to monitor low-level or high-level context data, e.g.:
 - Device:Network:*:Bandwidth
 - Location:Coordinates
AMPROS proposed architecture (4)

●

Policies

✓ describe the interest of individual applications, or users, or middleware itself to be notified when significant context changes occur, and the associated behaviour, e.g.:

◆ if (Device:Network::*:Bandwidth < {10} && Device:Processor > 25) then "enable compression"

● Context Manager

✓ notifies the appropriate entity (application, user, middleware) when significant context changes occur, e.g.:

◆ notify "middleware", "enable compression"
◆ notify "user", "battery low"